Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2782: 159-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622400

RESUMO

Regulatory B (Breg) cells have been demonstrated to play an important role in the inhibition of a wide range of immunological responses, and they are absent or malfunction in autoimmune diseases like lupus. Breg cells can control immunological responses and keep the immune system in a balanced state by releasing immunosuppressive cytokines such as transforming growth factor-beta (TGF-ß) and interleukin-10 (IL-10), which in turn promote regulatory T (Treg) cells and reduce effector T cell responses. Breg cells have also been linked to the modulation of cancer immunity. Due to their immunosuppressive role, in the context of cancer, Breg cells aid in tumor immune evasion and promote tumor progression. Nonetheless, it has been established that Breg cells are involved in both cancer immunity and autoimmunity, and their characterizations beyond surface markers, for example, on the transcriptomic level, are essential for our understanding of Breg biology in health and disease. In this chapter, using lupus-prone MRL/lpr mice, we describe a Breg cell isolation protocol for the purpose of single-cell RNA sequencing analysis.


Assuntos
Doenças Autoimunes , Linfócitos B Reguladores , Neoplasias , Animais , Camundongos , Camundongos Endogâmicos MRL lpr , Citocinas/metabolismo , Fator de Crescimento Transformador beta/genética , Linfócitos T Reguladores , Doenças Autoimunes/patologia , Neoplasias/patologia
2.
Gut Microbes ; 16(1): 2323220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439579

RESUMO

The mechanisms of how host-microbe mutualistic relationships are established at weaning contingently upon B-cell surveillance remain inadequately elucidated. We found that CD138+ plasmacyte (PC)-mediated promotion of IgA response regulates the symbiosis between Bacteroides uniformis (B. uniformis) and the host during the weaning period. The IgA-skewed response of CD138+ PCs is essential for B. uniformis to occupy a defined gut luminal niche, thereby fostering stable colonization. Furthermore, B. uniformis within the natural gut niche was perturbed in the absence of IgA, resulting in exacerbated gut inflammation in IgA-deficient mice and weaned piglets. Thus, we propose that the priming and maintenance of intestinal IgA response from CD138+ PCs are required for host-microbial symbiosis, whereas the perturbation of which would enhance inflammation in weaning process.


Assuntos
Bacteroides , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Suínos , Animais , Camundongos , Desmame , Inflamação , Imunoglobulina A
3.
Food Chem ; 446: 138815, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428087

RESUMO

In this study, we developed a process combining dilute alkali (NaOH or NaHCO3) and physical (disk milling and/or ball milling) treatments to improve the functionality and fermentability of corn fiber. The results showed that combining chemical with physical processes greatly improved the functionality and fermentability of corn fiber. Corn fiber treated with NaOH followed by disk milling (NaOH-DM-CF) had the highest water retention (19.5 g/g), water swelling (38.8 mL/g), and oil holding (15.5 g/g) capacities. Moreover, NaOH-DM-CF produced the largest amount (42.9 mM) of short-chain fatty acid (SCFA) during the 24-hr in vitro fermentation using porcine fecal inoculum. In addition, in vitro fermentation of NaOH-DM-CF led to a targeted microbial shifting to Prevotella (genus level), aligning with a higher fraction of propionic acid. The outstanding functionality and fermentability of NaOH-DM-CF were attributed to its thin and loose structure, decreased ester linkages and acetyl groups, and enriched structural carbohydrate exposure.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Animais , Suínos , Fibras na Dieta/análise , Zea mays/química , Álcalis , Hidróxido de Sódio , Ração Animal/análise , Fezes/química , Ácidos Graxos Voláteis/análise , Água/análise , Fermentação
4.
Immunohorizons ; 8(2): 172-181, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353996

RESUMO

Aryl hydrocarbon receptor (AhR) responds to endogenous and exogenous ligands as a cytosolic receptor, transcription factor, and E3 ubiquitin ligase. Several studies support an anti-inflammatory effect of AhR activation. However, exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early stages of development results in an autoimmune phenotype and exacerbates lupus. The effects of TCDD on lupus in adults with pre-existing autoimmunity have not been described. We present novel evidence that AhR stimulation by TCDD alters T cell responses but fails to impact lupus-like disease using an adult mouse model. Interestingly, AhR antagonist CH223191 also changed T cell balance in our model. We next developed a conceptual framework for identifying cellular and molecular factors that contribute to physiological outcomes in lupus and created models that describe cytokine dynamics that were fed into a system of differential equations to predict the kinetics of T follicular helper (Tfh) and regulatory T (Treg) cell populations. The model predicted that Tfh cells expanded to larger values following TCDD exposure compared with vehicle and CH223191. Following the initial elevation, both Tfh and Treg cell populations continuously decayed over time. A function based on the ratio of predicted Treg/Tfh cells showed that Treg cells exceed Tfh cells in all groups, with TCDD and CH223191 showing lower Treg/Tfh cell ratios than the vehicle and that the ratio is relatively constant over time. We conclude that AhR ligands did not induce an anti-inflammatory response to attenuate autoimmunity in adult lupus mice. This study challenges the dogma that TCDD supports an immunosuppressive phenotype.


Assuntos
Dibenzodioxinas Policloradas , Pirazóis , Linfócitos T Reguladores , Animais , Camundongos , Compostos Azo , Dibenzodioxinas Policloradas/farmacologia , Anti-Inflamatórios
5.
Front Immunol ; 15: 1359534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352866

RESUMO

Introduction: Leaky gut has been linked to autoimmune disorders including lupus. We previously reported upregulation of anti-flagellin antibodies in the blood of lupus patients and lupus-prone mice, which led to our hypothesis that a leaky gut drives lupus through bacterial flagellin-mediated activation of toll-like receptor 5 (TLR5). Methods: We created MRL/lpr mice with global Tlr5 deletion through CRISPR/Cas9 and investigated lupus-like disease in these mice. Result: Contrary to our hypothesis that the deletion of Tlr5 would attenuate lupus, our results showed exacerbation of lupus with Tlr5 deficiency in female MRL/lpr mice. Remarkably higher levels of proteinuria were observed in Tlr5 -/- MRL/lpr mice suggesting aggravated glomerulonephritis. Histopathological analysis confirmed this result, and Tlr5 deletion significantly increased the deposition of IgG and complement C3 in the glomeruli. In addition, Tlr5 deficiency significantly increased renal infiltration of Th17 and activated cDC1 cells. Splenomegaly and lymphadenopathy were also aggravated in Tlr5-/- MRL/lpr mice suggesting impact on lymphoproliferation. In the spleen, significant decreased frequencies of regulatory lymphocytes and increased germinal centers were observed with Tlr5 deletion. Notably, Tlr5 deficiency did not change host metabolism or the existing leaky gut; however, it significantly reshaped the fecal microbiota. Conclusion: Global deletion of Tlr5 exacerbates lupus-like disease in MRL/lpr mice. Future studies will elucidate the underlying mechanisms by which Tlr5 deficiency modulates host-microbiota interactions to exacerbate lupus.


Assuntos
Glomerulonefrite , Receptor 5 Toll-Like , Animais , Feminino , Humanos , Camundongos , Glomerulonefrite/patologia , Rim/patologia , Camundongos Endogâmicos MRL lpr , Proteinúria
6.
J Nutr ; 154(3): 1039-1049, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224737

RESUMO

BACKGROUND: Certain foods can trigger flares in patients with systemic lupus erythematosus. Lectins in edible plants have been reported to increase inflammation. OBJECTIVE: This study aimed to determine the effects of 1-time intake of soybean agglutinin (SBA) on the gut microbiota and immune response in lupus-prone MRL/MpJ (MRL)/lpr mice. METHODS: MRL/MpJ-Faslpr/J (MRL/lpr) and MRL mice were randomly assigned into 4 groups (8 mice/group): MRL mice + phosphate-buffered saline (PBS) (CON), MRL mice + SBA (CS), MRL/lpr mice + PBS (LPR), and MRL/lpr + SBA (LS). PBS and SBA were orally administered at 16 wk of age, and all mice were killed 24 h after oral challenge. The disease phenotype, levels of proinflammatory cytokines, and composition of the intestinal microbiota were determined. RESULTS: Interferon-gamma (IFN-γ) in the serum was significantly higher, whereas the level of serum IL-10 was significantly lower in LS mice than in LPR mice [fold change (FC) = 1.31 and FC = 0.36, respectively]. The expression levels of IL-6 and TNF-α in the spleen of LS mice were significantly higher than those in LPR mice (FC = 1.66 and FC = 1.96, respectively). The expression levels of IL-6, TNF-α, and IL-1ß in the kidney were also significantly higher in LS mice than in LPR mice (FC = 2.89, FC = 3.78, and FC = 2.02, respectively). The relative abundances of Erysipelotrichaceae and Turicibacter in LS mice were significantly higher than those in LPR mice (FC = 1.73 and FC = 1.74, respectively). The percentage of Breg cells in the mesenteric lymph nodes was significantly lower in LS mice than in LPR mice (FC = 0.53) (P < 0.05). No change was found between SBA treatment or not in the control (MRL) mice. CONCLUSIONS: One-time intake of SBA can promote the secretion of proinflammatory cytokines, downregulate Breg cells, and alter the intestinal flora in MRL/lpr mice within 24 h of oral challenge, which may contribute to exacerbation of lupus.


Assuntos
Microbioma Gastrointestinal , Fito-Hemaglutininas , Proteínas de Soja , Humanos , Camundongos , Animais , Interleucina-6 , Camundongos Endogâmicos MRL lpr , Fator de Necrose Tumoral alfa , Citocinas/metabolismo , Inflamação
7.
Front Immunol ; 14: 1282770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155972

RESUMO

Introduction: B cells can have both pathogenic and protective roles in autoimmune diseases, including systemic lupus erythematosus (SLE). Deficiencies in the number or immunosuppressive function of IL-10 producing regulatory B cells (Bregs) can cause exacerbated autoimmune inflammation. However, the exact role of Bregs in lupus pathogenesis has not been elucidated. Methods: We carried out gene expression analysis by scRNA-seq to characterize differences in splenic Breg subsets and molecular profiles through stages of disease progression in lupus-prone mice. Transcriptome-based changes in Bregs from mice with active disease were confirmed by phenotypic analysis. Results: We found that a loss of marginal zone (MZ) lineage Bregs, an increase in plasmablast/plasma cell (PB-PC) lineage Bregs, and overall increases in inflammatory gene signatures were characteristic of active disease as compared to Bregs from the pre-disease stage. However, the frequencies of both MZ Bregs and PB-PCs expressing IL-10 were significantly decreased in active-disease mice. Conclusion: Overall, we have identified changes to the repertoire and transcriptional landscape of Breg subsets associated with active disease that provide insights into the role of Bregs in lupus pathogenesis. These results could inform the design of Breg-targeted therapies and interventions to restore Breg suppressive function in autoimmunity.


Assuntos
Doenças Autoimunes , Linfócitos B Reguladores , Lúpus Eritematoso Sistêmico , Animais , Camundongos , Interleucina-10/genética , Interleucina-10/metabolismo , Lúpus Eritematoso Sistêmico/genética , Análise de Sequência de RNA
8.
Inflamm Res ; 72(5): 1083-1097, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060359

RESUMO

OBJECTIVE: Patients with systemic lupus erythematosus (SLE) often develop multi-organ damages including heart and kidney complications. We sought to better define the underlying mechanisms with a focus on the chemokine receptor CX3CR1. METHODS: We generated Cx3cr1-deficient MRL/lpr lupus-prone mice through backcrossing. We then employed heterozygous intercross to generate MRL/lpr littermates that were either sufficient or deficient of CX3CR1. The mice were also treated with either Lactobacillus spp. or a high-fat diet (HFD) followed by assessments of the kidney and heart, respectively. RESULTS: Cx3cr1-/- MRL/lpr mice exhibited a distinct phenotype of exacerbated glomerulonephritis compared to Cx3cr1+/+ littermates, which was associated with a decrease of spleen tolerogenic marginal zone macrophages and an increase of double-negative T cells. Interestingly, upon correction of the gut microbiota with Lactobacillus administration, the phenotype of exacerbated glomerulonephritis was reversed, suggesting that CX3CR1 controls glomerulonephritis in MRL/lpr mice through a gut microbiota-dependent mechanism. Upon treatment with HFD, Cx3cr1-/- MRL/lpr mice developed significantly more atherosclerotic plaques that were promoted by Ly6C+ monocytes. Activated monocytes expressed ICOS-L that interacted with ICOS-expressing follicular T-helper cells, which in turn facilitated a germinal center reaction to produce more autoantibodies. Through a positive feedback mechanism, the increased circulatory autoantibodies further promoted the activation of Ly6C+ monocytes and their display of ICOS-L. CONCLUSIONS: We uncovered novel, Cx3cr1 deficiency-mediated pathogenic mechanisms contributing to SLE-associated glomerulonephritis and cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Glomerulonefrite , Lúpus Eritematoso Sistêmico , Animais , Camundongos , Receptor 1 de Quimiocina CX3C/genética , Camundongos Endogâmicos MRL lpr , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/genética , Autoanticorpos , Modelos Animais de Doenças
9.
Front Immunol ; 14: 1120958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969209

RESUMO

NLRP12 has dual roles in shaping inflammation. We hypothesized that NLRP12 would modulate myeloid cells and T cell function to control systemic autoimmunity. Contrary to our hypothesis, the deficiency of Nlrp12 in autoimmune-prone B6.Faslpr/lpr mice ameliorated autoimmunity in males but not females. Nlrp12 deficiency dampened B cell terminal differentiation, germinal center reaction, and survival of autoreactive B cells leading to decreased production of autoantibodies and reduced renal deposition of IgG and complement C3. In parallel, Nlrp12 deficiency reduced the expansion of potentially pathogenic T cells, including double-negative T cells and T follicular helper cells. Furthermore, reduced pro-inflammatory innate immunity was observed, where the gene deletion decreased in-vivo expansion of splenic macrophages and mitigated ex-vivo responses of bone marrow-derived macrophages and dendritic cells to LPS stimulation. Interestingly, Nlrp12 deficiency altered the diversity and composition of fecal microbiota in both male and female B6/lpr mice. Notably, however, Nlrp12 deficiency significantly modulated small intestinal microbiota only in male mice, suggesting that the sex differences in disease phenotype might be gut microbiota-dependent. Together, these results suggest a potential pathogenic role of NLRP12 in promoting systemic autoimmunity in males. Future studies will investigate sex-based mechanisms through which NLRP12 differentially modulates autoimmune outcomes.


Assuntos
Autoimunidade , Microbioma Gastrointestinal , Camundongos , Masculino , Feminino , Animais , Autoanticorpos , Rim , Linfócitos B , Peptídeos e Proteínas de Sinalização Intracelular
10.
Immunohorizons ; 7(1): 17-29, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637518

RESUMO

Vitamin A (VA) deficiency (VAD) is observed in both humans and mice with lupus nephritis. However, whether VAD is a driving factor for accelerated progression of lupus nephritis is unclear. In this study, we investigated the effect of VAD on the progression of lupus nephritis in a lupus-prone mouse model, MRL/lpr. We initiated VAD either during gestation or after weaning to reveal a potential time-dependent effect. We found exacerbated lupus nephritis at ∼15 wk of age with both types of VAD that provoked tubulointerstitial nephritis leading to renal failure. This was concomitant with significantly higher mortality in all VAD mice. Importantly, restoration of VA levels after weaning reversed VAD-induced mortality. These results suggest VAD-driven acceleration of tubulointerstitial lupus nephritis. Mechanistically, at the earlier time point of 7 wk of age and before the onset of clinical lupus nephritis, continued VAD (from gestation until postweaning) enhanced plasma cell activation and augmented their autoantibody production, while also increasing the expansion of T lymphocytes that could promote plasma cell autoreactivity. Moreover, continued VAD increased the renal infiltration of plasmacytoid dendritic cells. VAD initiated after weaning, in contrast, showed modest effects on autoantibodies and renal plasmacytoid dendritic cells that were not statistically significant. Remarkably, analysis of gene expression in human kidney revealed that the retinoic acid pathway was decreased in the tubulointerstitial region of lupus nephritis, supporting our findings in MRL/lpr mice. Future studies will elucidate the underlying mechanisms of how VAD modulates cellular functions to exacerbate tubulointerstitial lupus nephritis.


Assuntos
Nefrite Lúpica , Nefrite Intersticial , Camundongos , Humanos , Animais , Nefrite Lúpica/genética , Camundongos Endogâmicos MRL lpr , Rim , Autoanticorpos
11.
Front Immunol ; 14: 1330500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299151

RESUMO

Systemic lupus erythematosus (SLE) is a systemic chronic disease initiated by an abnormal immune response to self and can affect multiple organs. SLE is characterized by the production of autoantibodies and the deposition of immune complexes. In regard to the clinical observations assessed by rheumatologists, several chemokines and cytokines also contribute to disease progression. One such chemokine and adhesion molecule is CX3CL1 (otherwise known as fractalkine). CX3CL1 is involved in cell trafficking and inflammation through recognition by its receptor, CX3CR1. The CX3CL1 protein consists of a chemokine domain and a mucin-like stalk that allows it to function both as a chemoattractant and as an adhesion molecule. In inflammation and specifically lupus, the literature displays contradictory evidence for the functions of CX3CL1/CX3CR1 interactions. In addition, the gut microbiota has been shown to play an important role in the pathogenesis of SLE. This review highlights current studies that illustrate the interactions of the gut microbiota and CX3CR1 in SLE.


Assuntos
Microbioma Gastrointestinal , Lúpus Eritematoso Sistêmico , Humanos , Receptor 1 de Quimiocina CX3C/metabolismo , Inflamação , Citocinas , Receptores de Complemento 3b
12.
Front Immunol ; 13: 923754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967418

RESUMO

Commensal bacteria and the immune system have a close and strong relationship that maintains a balance to control inflammation. Alterations of the microbiota, known as dysbiosis, can direct reactivity to self-antigens not only in the intestinal mucosa but also at the systemic level. Our laboratory previously reported gut dysbiosis, particularly lower abundance of bacteria in the family Lactobacillaceae, in lupus-prone MRL/lpr mice, a model of systemic autoimmunity. Restoring the microbiota with a mix of 5 different Lactobacillus species (spp.), L. reuteri, L. oris, L. johnsonii, L. gasseri and L. rhamnosus, attenuated lupus-liked clinical signs, including splenomegaly and lymphadenopathy. However, our understanding of the mechanism was limited. In this study, we first investigated the effects of individual species. Surprisingly, none of the species individually recapitulated the benefits of the mix. Instead, Lactobacillus spp. acted synergistically to attenuate splenomegaly and renal lymphadenopathy through secreted factors and a CX3CR1-dependent mechanism. Interestingly, oral administration of MRS broth exerted the same benefits likely through increasing the relative abundance of endogenous Lactobacillus spp. Mechanistically, we found increased percentages of FOXP3-negative type 1 regulatory T cells with administration of the mix in both spleen and mesenteric lymph nodes. In addition, oral gavage of Lactobacillus spp. decreased the percentage of central memory T cells while increasing that of effector memory T cells in the lymphoid organs. Furthermore, a decreased percentage of double negative T cells was observed in the spleen with the mix. These results suggest that Lactobacillus spp. might act on T cells to attenuate splenomegaly and lymphadenopathy. Together, this study advances our understanding of how Lactobacillus spp. attenuate lupus in MRL/lpr mice. The synergistic action of these bacteria suggests that multiple probiotic bacteria in combination may dampen systemic autoimmunity and benefit lupus patients.


Assuntos
Lactobacillus , Linfadenopatia , Animais , Disbiose , Camundongos , Camundongos Endogâmicos MRL lpr , Esplenomegalia
13.
Front Immunol ; 13: 946248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833129

RESUMO

With the rising prevalence of autoimmune diseases, the role of the environment, specifically the gut microbiota, in disease development has grown to be a major area of study. Recent advances show a relationship and possible cause and effect between the gut microbiota and the initiation or exacerbation of autoimmune diseases. Furthermore, microbial dysbiosis and leaky gut are frequent phenomena in both human autoimmune diseases and the murine autoimmunity models. This review will focus on literature in recent years concerning the gut microbiota and leaky gut in relation to the autoimmune diseases, including systemic lupus erythematosus, type 1 diabetes, and multiple sclerosis.


Assuntos
Doenças Autoimunes , Microbioma Gastrointestinal , Lúpus Eritematoso Sistêmico , Animais , Autoimunidade , Disbiose , Humanos , Camundongos
14.
Microbiol Spectr ; 10(4): e0061022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35700135

RESUMO

The LuxS enzyme plays a key role in both quorum sensing (QS) and the regulation of bacterial growth. It catalyzes the production of autoinducer-2 (AI-2) signaling molecule, which is a component of the methyl cycle and methionine metabolism. This study aimed at investigating the differences between the Lactobacillus rhamnosus GG (LGG) wild-type strain (WT) and its luxS mutant (ΔluxS) during biofilm formation and when resisting to inflammation caused by Enterotoxigenic Escherichia coli (ETEC) in germ-free zebrafish. Our results suggest that in the absence of luxS when LGG was knocked out, biofilm formation, extracellular polysaccharide secretion and adhesion were all compromised. Addition of synthetic AI-2 indeed rescued, at least partially, the deficiencies observed in the mutant strain. The colonizing and immunomodulatory function in WT versus ΔluxS mutants were further studied in a germ-free zebrafish model. The concentration of AI-2 signaling molecules decreased sharply in zebrafish infected with the ΔluxS. At the same time, compared with the ΔluxS, the wild-type strain could colonize the germ-free zebrafish more effectively. Our transcriptome results suggest that genes involved in immunity, signal transduction, and cell adhesion were downregulated in zebrafish infected with ΔluxS and WT. In the WT, the immune system of germ-free zebrafish was activated more effectively through the MAPK and NF-κB pathway, and its ability to fight the infection against ETEC was increased. Together, our results demonstrate that the AI-2/LuxS system plays an important role in biofilm formation to improve LGG and alleviate inflammation caused by ETEC in germ-free zebrafish. IMPORTANCE Lactobacillus rhamnosus GG is a widely used probiotic to improve host intestinal health, promote growth, reduce diarrhea, and modulate immunity. In recent years, the bacterial quorum sensing system has attracted much attention; however, there has not been much research on the effect of the LuxS/AI-2 quorum sensing system of Lactobacillus on bacteriostasis, microbial ecology balance, and immune regulation in intestine. In this study, we used germ-free zebrafish as an animal model to compare the differences between wild-type and luxS mutant strains. We showed how AI-2/LuxS QS affects the release of AI-2 and how QS regulates the colonization, EPS synthesis and biofilm formation of LGG. This study provides an idea for the targeted regulation of animal intestinal health with probiotics by controlling bacteria quorum sensing system.


Assuntos
Escherichia coli Enterotoxigênica , Lacticaseibacillus rhamnosus , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/metabolismo , Regulação Bacteriana da Expressão Gênica , Inflamação , Lacticaseibacillus rhamnosus/metabolismo , Percepção de Quorum , Peixe-Zebra/metabolismo
15.
J Vis Exp ; (184)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35758671

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disorder with no known cure and is characterized by persistent inflammation in many organs, including the kidneys. Under such circumstances, the kidney loses its ability to clean waste from the blood and regulate salt and fluid concentrations, eventually leading to renal failure. Women, particularly those of childbearing age, are diagnosed nine times more often than men. Kidney disease is the leading cause of mortality in SLE patients. The present protocol describes a quick and simple method to measure excreted protein levels in collected urine, tracking lupus progression over time. In addition, an approach to isolate kidney mononuclear cells is provided based on size and density selection to investigate renal infiltration of leukocytes. Furthermore, an immunohistochemical method has been developed to characterize protein deposition in the glomeruli and leukocyte infiltration in the tubulointerstitial space. Together, these methods can help investigate the progression of chronic inflammation associated with the kidneys of lupus-prone MRL/lpr mice.


Assuntos
Rim , Lúpus Eritematoso Sistêmico , Animais , Feminino , Humanos , Inflamação/metabolismo , Rim/metabolismo , Leucócitos/metabolismo , Lúpus Eritematoso Sistêmico/complicações , Camundongos , Camundongos Endogâmicos MRL lpr , Proteinúria/complicações , Proteinúria/metabolismo
16.
J Vis Exp ; (183)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35575531

RESUMO

Gut microbiota has an important role in educating the immune system. This relationship is extremely important for understanding autoimmune diseases that are not only driven by genetic factors, but also environmental factors that can trigger the onset and/or worsen the disease course. A previously published study on the dynamics of the gut microbiota in lupus-prone MRL/lpr female mice showed how changes of the gut microbiota can alter disease progression. Here, a protocol is described for extracting representative samples from the gut microbiota for studies of autoimmunity. Microbiota samples are collected from the anus and processed, from which the DNA is extracted using a phenol-chloroform method and purified by alcohol precipitation. After PCR is performed, purified amplicons are sequenced using a Next Generation Sequencing platform at Argonne National Laboratory. Finally, the 16S ribosomal RNA gene sequencing data is analyzed. As an example, data obtained from gut microbiota comparisons of MRL/lpr mice with or without CX3CR1 are shown. Results showed significant differences in genera containing pathogenic bacteria such as those in the phylum Proteobacteria, as well as the genus Bifidobacterium, which is considered part of the healthy commensal microbiota. In summary, this simple, cost-effective DNA isolation method is reliable and can help the investigation of gut microbiota changes associated with autoimmune diseases.


Assuntos
Doenças Autoimunes , Microbiota , Animais , Análise Custo-Benefício , DNA , Fezes/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos MRL lpr , RNA Ribossômico 16S/genética
17.
Immunohorizons ; 6(1): 36-46, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039434

RESUMO

MRL/lpr mice have been extensively used as a murine model of lupus. Disease progression in MRL/lpr mice can differ among animal facilities, suggesting a role for environmental factors. We noted a phenotypic drift of our in-house colony, which was the progeny of mice obtained from The Jackson Laboratory (JAX; stocking number 000485), that involved attenuated glomerulonephritis, increased splenomegaly, and reduced lymphadenopathy. To validate our in-house mice as a model of lupus, we compared these mice with those newly obtained from JAX, which were confirmed to be genetically identical to our in-house mice. Surprisingly, the new JAX mice exhibited a similar phenotypic drift, most notably the attenuation of glomerulonephritis. Interestingly, our in-house colony differed from JAX mice in body weight and kidney size (both sexes), as well as in splenic size, germinal center formation, and level of anti-dsDNA auto-IgG in the circulation (male only). In addition, we noted differential expression of microRNA (miR)-21 and miR-183 that might explain the splenic differences in males. Furthermore, the composition of gut microbiota was different between in-house and new JAX mice at early time points, which might explain some of the renal differences (e.g., kidney size). However, we could not identify the reason for attenuated glomerulonephritis, a shared phenotypic drift between the two colonies. It is likely that this was due to certain changes of environmental factors present in both JAX and our facilities. Taken together, these results suggest a significant phenotypic drift in MRL/lpr mice in both colonies that may require strain recovery from cryopreservation.


Assuntos
Microbioma Gastrointestinal/genética , Nefrite Lúpica/genética , MicroRNAs/genética , Animais , Modelos Animais de Doenças , Feminino , Rim/patologia , Nefrite Lúpica/microbiologia , Nefrite Lúpica/patologia , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , RNA Ribossômico 16S/análise , Baço/patologia
18.
Front Nutr ; 8: 784681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901130

RESUMO

Background: Intermittent fasting (IF) can reduce energy intake and body weight (BW). Melatonin has many known functions, which include reducing appetite and preventing excessive weight gain. Objective: This study aimed to investigate the effects of IF on body fat and the gut microbiota and metabolome as well as a potential interaction with melatonin. Methods: Male C57BL/6J mice (23.0 ± 0.9 g, 6 wk old) were randomly assigned into four groups (12 mice/group): control (C), intermittent fasting (F), melatonin (M), and intermittent fasting plus melatonin (MF). The C and M groups mice were provided with ad libitum access to food and water, while the F and MF groups underwent alternative-day feed deprivation (15 cycles total). Melatonin was administered in the drinking water of the M and MF groups. Blood, epididymal fat, liver tissue, and intestinal tissue and contents were collected for lab measurements, histology, and microbiota and metabolome analysis. Main effects and interactions were tested by 2-factor ANOVA. Results: IF significantly reduced BW gain and serum glucose, total cholesterol (TC) and triglyceride (TG) levels. Adipocyte size significantly decreased with IF, then the number of adipocytes per square millimeter significantly increased (P < 0.05). Compared to the C group, the M and MF groups had significantly higher serum melatonin levels (17 and 21%, respectively), although melatonin monotherapy had no effect on serum parameters and adipocytes. There was no interaction between IF and melatonin on BW gain and serum parameters except for on adipocyte area and number per square millimeter, Bacteroidetes and Akkermansia bacterial abundance, and the levels of the intestinal metabolites alanine, valine and isoleucine. IF changed the intestinal microbiota structure, with the F and MF groups clearly separating from the C and M groups. Metabolomic analysis showed that there was obvious separation between all four groups. Conclusions: IF, but neither melatonin nor the interaction between IF and melatonin, could alter intestinal microbiota and metabolism and prevent obesity by reducing BW gain, serum glucose, TC, and TG, and adipocyte size in mice.

19.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619092

RESUMO

Infants are prone to enteric infections due to an underdeveloped immune system. The maternal microbiota, through shaping the neonatal microbiota, helps establish a strong immune system in infants. We and others have observed the phenomenon of enhanced early neonatal immunoglobulin A (IgA) production in preweaning immunocompetent mice nursed by immunodeficient dams. Here, we show that this enhancement of IgA in neonates results from maternally derived microbiota. In addition, we have found that the neonatal IgA production can be induced by Lactobacillus reuteri, which is enriched in the milk of immunodeficient dams. Moreover, we show that while the production of neonatal IgA is dependent on neonatal T cells, the immunodeficient maternal microbiota-mediated enhancement of neonatal IgA has a T cell-independent component. Indeed, this enhancement may be dependent on type 3 innate lymphoid cells in the neonatal small intestinal lamina propria. Interestingly, maternal microbiota-induced neonatal IgA does not cross-react with common enteric pathogens. Future investigations will determine the functional consequences of having this extra IgA.


Assuntos
Formação de Anticorpos/imunologia , Imunidade Materno-Adquirida , Imunoglobulina A/imunologia , Imunomodulação , Microbiota/imunologia , Animais , Animais Recém-Nascidos , Reações Cruzadas/imunologia , Feminino , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Mucosa Intestinal/imunologia , Limosilactobacillus reuteri/imunologia , Masculino , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo
20.
Front Immunol ; 12: 749774, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069526

RESUMO

The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.


Assuntos
Doenças Autoimunes/epidemiologia , Autoimunidade , COVID-19/epidemiologia , COVID-19/imunologia , Dieta/métodos , Higiene , Tolerância Imunológica , Pandemias , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Incidência , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...